الزمكان معلومات و حقائق و أسرار

بواسطة :
الزمكان معلومات و حقائق و أسرار

٢ الزمكان معلومات :

الزمكان (بالإنجليزية:/ Spacetime)‏ (الزمان-مكان) أو الزمان المكاني هو دمج لمفهومي الزمان والمكان، هو الفضاء بأبعاده الأربعة، الأبعاد المكانية الثلاثة التي نعرفها؛ الطول والعرض والارتفاع، مضاف إليها الزمن كبعد رابع، هذه الفضاء الرباعي تشكل نسيج أو شبكة تحمل كل شيء في هذا الكون، كل جسم مهما كان حجمه وكل حدث يخضع لها، فلا وجود للأشياء ولا للأحداث خارج نطاقي الزمان والمكان. يعد هذا مصطلح حديث نسبيا في الفيزياء منحوت من كلمتي الزمان المكان يُطلق على أي نموذج رياضي يدمج الأبعاد الثلاثة للمكان مع بعد واحد للزمن ليكوّن فضاءّ رباعي الأبعاد. يمكن استخدام المخططات الزمكانية لتصوّر التأثيرات النسبية مثل السبب وراء التباين الذي يراه مراقبون مختلفون في زمن ومكان وقوع حدث ما.

كان الافتراض السائد قبل مطلع القرن العشرين أن هندسة الكون ثلاثية الأبعاد (أي صياغتها المكانية من ناحية الإحداثيات والمسافات والاتجاهات) كانت مستقلة عن البعد الزمني الواحد. ولكن بنى ألبرت أينشتاين عمله المؤثر في النسبية الخاصة عام 1905 على فرضيتين:/

  • (1) قوانين الفيزياء لا تتغير في جميع الجمل العطالية (أي الأطر المرجعية غير المتسارعة).
  • (2) سرعة الضوء في الخلاء هي نفسها لجميع المراقبين بغض النظر عن حركة مصدر الضوء.

في هذا الفضاء الرباعي الأبعاد تميز كل نقطة برباعية (س، ع، ص، ز) حيث ترمز س، ع، ص إلى الإحداثيات المكانية ويرمز ز إلى الإحداثي الزمني. فهو المزج بين الزمان والمكان في إطار واحد بحيث لا يتم الفصل بينهما عند إجراء الحسابات الفيزيائية. ظهرت هذه الأطروحة بواسطة عالم الفيزياء ألبرت أينشتاين في نموذجه النسبي الخاص.

ظهرت الأطروحة لتحدد مكان جسم ما في الفضاء الشاسع بطريقة أكثر تحديدا بالاعتماد على عنصر الزمان بدلا من الاعتماد على الثلاثة محاور للمكان فقط.

٣ الزمكان حقائق :

تعوض النظرية النسبية الخاصة عن إحداثيات المكان الثلاثة {displaystyle (x,y,z)}{displaystyle (x,y,z)} بإحداثيات أربع من ضمنها إحداثية الزمان {displaystyle ct}{displaystyle ct} فتكون احداثية نقطة في الزمكان {displaystyle (ct,x,y,z)}{displaystyle (ct,x,y,z)}. حيث c سرعة الضوء والزمن t.

وتمثل المساحة العنصرية في الميكانيكا الكلاسيكية:/

{displaystyle ,mathrm {d} s^{2}=mathrm {d} x^{2}+mathrm {d} y^{2}+mathrm {d} z^{2}.}{displaystyle ,mathrm {d} s^{2}=mathrm {d} x^{2}+mathrm {d} y^{2}+mathrm {d} z^{2}.}

أما في الزمكان فتوصف نقطة فيه بأربع إحداثيات وتسمى في المجمل ب "الحدث". وتعرف المساحة العنصرية في الزمكان ب:/

{displaystyle ,mathrm {d} s^{2}=c^{2}mathrm {d} t^{2}-mathrm {d} x^{2}-mathrm {d} y^{2}-mathrm {d} z^{2}.}{displaystyle ,mathrm {d} s^{2}=c^{2}mathrm {d} t^{2}-mathrm {d} x^{2}-mathrm {d} y^{2}-mathrm {d} z^{2}.}

أتاحت تلك الفكرة لأينشتاين دراسة حركة الأجسام بسرعات مقاربة لسرعة الضوء، وتبدو عندها ظواهر طبيعية غريبة، إذ تشكل سرعة الضوء حدا أقصى لحركة الأجسام وانتقال الطاقة وانتشار الموجات الكهرومغناطيسية وترتبت عليها استنتاجات غريبة، ذلك لأننا نعهد في حياتنا العادية سرعات أقل بكثير من سرعة الضوء.

انحناء الزمكان وتسريع المركزية الطاردة

عندما تكون سرعة الجسم v صغيرة بالنسبة إلى سرعة الضوء c يكون انحناء المدار مساويا g/v2 حيث g ثابت الجاذبية، أي يكون مساويا للتسارع الناشئ عن الطرد المركزي في حالة الميكانيكا الكلاسيكية. أما بالنسبة للضوء حيث v=c فتصبح (1 + v2/c2) قيمتها 2، ويكون انحناء المدار ضعف 2g/v2 الحالة الكلاسيكية.

وبناء على ذلك يعاني شعاع الضوء القادم من أحد النجوم عند اقترابه من جاذبية الشمس انحناء مساويا ضعف انحنائه الذي تحسبه الميكانيكا الكلاسيكية. وقد ثبت ذلك في تجربة قام بها "آرثر إدينجتون" عام 1919 حيث رصد شعاع أحد النجوم خلال كسوف الشمس أثناء وجوده في جنوب أفريقيا.

وبسبب هذا الانحناء البسيط فلا تتبع أفلاك الكواكب حول الشمس شكل القطع الناقص تماما وإنما تتخذ شكل الزهرة، قد ثبت ذلك أيضا بقياس دوران نقطة اقتراب كوكب المريخ عند أقرب نقطة بينه وبين الشمس.

٤ الزمكان أسرار :

ما هي حركة الأجسام ؟

إذا شوهدت حركة جسم معين من مواقع مختلفة تتحرك بالنسبة لبعضها البعض ظهرت فيها حركة الجسم بصور مختلفة. فمثلا يأخذ مسار حجر ساقط من طائرة شكل منحنى قطع مكافئ بالنسبة للأرض، بينما يظهر مساره لراكب الطائرة كخط مستقيم، من أعلى إلى أسفل.

فكيف يتحرك الحجر في الواقع؟ نجد أن هذا السؤال لا معنى له، تماما كما لو سألنا "بأي زاوية يظهر القمر في الواقع ؟".

وينبع المسار الذي يتخذه جسم نفس الطبيعة "النسبية" التي تتصف بها صورة أحد المباني، فأينما قمنا بتصوير منزل من الأمام أم الخلف نحصل على صورة مختلفة تعتمد على موقع المشاهدة. وكذلك يتخذ شكل منحنى جسم ساقط شكل منحنيات مختلفة تختلف باختلاف موقع المشاهدة أو المختبر الذي نجري منه القياس، فهي تختلف إذا كنا نشاهده من على الأرض أم نشاهده من طائرة أو غيرها.

أي عند عزمنا على دراسة مسار جسم يتحرك واجهتنا مشكلة اختيار موقع المشاهدة، إذ أننا نريد عن طريق دراسة مساره التنبؤ بمساره في زمن قادم تحت ظروف معينة. أو بمعنى أصح نريد معرفة القوانين التي تتحكم في حركته وترغمه على اتباع هذا المسار بالذات.

تمدد الزمن وتقلص الطول

تمدد الزمن:/ هي ظاهرة نسبية توصف ب استغرق وقتًا أطول للساعات التي تسير بشكل أسرع (في مرجع المراقب) لتخرج نفس الكمية من الوقت الصحيح، وهي تقطع مسافات أكبر على طول المحور x من التي تقطعها بدون تمدد الزمن. 1 :/219 قياس تمدد الزمن من قبل اثنين من المراقبين في مرجعي قصور ذاتي مختلف يكون متبادل. فإذا كان المراقِب O يقيس ساعات المراقب O ′ وهي تسير بشكل أبطأ في إطاره، فإن المراقب O ′ سيقيس ساعات المراقب O بأنها تسير بشكل أبطأ كذلك.

تقلص الطول، مثل تمدد الزمن، هو مظهر من مظاهر التزامن للنسبية. يتطلب قياس الطول قياس فترة الزمكان بين حدثين متزامنين في إطار مرجعي واحد. لكن الأحداث التي تكون متزامنة في إطار مرجعي واحد، بشكل عام، ليست متزامنة في الأطر المرجعية الأخرى.

اكتشاف السكون

تتأثر حركة الأجسام بما حولها وتسمى تلك المؤثرات الخارجية بالقوى. ويهتم علم الحركة بدراسة تأثير تلك القوى على الأجسام. فلنتخيل جسما لا يقع تحت تأثير قوى خارجية ولنتخذ مواقع مختلفة للمشاهدة فنجد أن مساره يتخذ أشكالا مختلفة تختلف باختلاف موقع المشاهدة. ومع ذلك لا ننكر أن أفضل مكان للمشاهدة هو ذاك الذي يظهر منه الجسم كما لوكان في حالة سكون. يمكننا بذلك وصف حالة "السكون" وصفا جيدا لا يعتمد على حركة الجسم بالنسبة إلى حركة الأجسام الأخرى، فالجسم الذي لا تؤثر عليه قوى خارجية يكون في حالة سكون.

المختبر الساكن

نتخيل أن مجموعة من الأجسام الساكنة - التي لا تؤثر عليها قوى خارجية - بأنها قد كونت مختبرا نسميه "المختبر الساكن" ونبدأ في دراسة خواص الحركة. فإذا قمنا بمشاهدة الحركة من مختبر آخر واتضح لنا اختلاف صفات الحركة فيه عن صفاتها من المختبر الساكن أمكننا إثبات أن المختبر الجديد يتحرك.

يتبين لنا أن الحركة في المختبرات الساكنة تتبع قوانين مغايرة للقوانين المشاهدة في مختبرات متحركة. ويتبادر لنا أن مفهوم الحركة يفقد بذلك صفته "النسبية". فعندما نتكلم عن الحركة نقصد ببساطة الحركة بالنسبة إلى "السكون" ونسميها حركة مطلقة.

نركب الآن قطارا بسرعة منتظمة في خط مستقيم ونبدأ مشاهدة أجسام تتحرك داخله ونقارنها بحركتها المشاهدة في قطار ساكن. نعرف من خبرتنا اليومية أنه لا يوجد اختلاف لحركة الأجسام داخل قطار متحرك بسرعة منتظمة وآخر متوقف. فإذا قذفنا كرة إلى أعلى داخل القطار عادت الكرة لتسقط في أيدينا ولن يحدث أن تتخذ مسارا منحنيا. فبصرف النظر عن الارتجاج البسيط في حركة القطار تكون حركة الأجسام داخل قطار يتحرك بسرعة منتظمة وفي خط مستقيم هي نفسها التي تحدث في قطار ثابت لا يتحرك. ويحدث الاختلاف فقط عند تسريع القطار أو تهدئة سرعته. ففي حالة تسريع القطار تنتابنا ارتجاجة إلى الخلف وفي حالة تهدئة سرعة القطار والكبح نندفع إلى الأمام. وفي كلتا الحالتين نشعر بالفرق بالمقارنة بحالة السكون.

وإذا استمر القطار سائرا بحركة منتظمة ثم غير اتجاهه فجأة شعرنا بذلك:/ ففي المنحنيات إلى اليمين الحادة نندفع إلى اليسار وفي المنحنيات اليسارية نندفع نحو اليمين. وبتعلم تلك المشاهد نصل إلى النتيجة التالية:/ لا يمكن اكتشاف أي اختلاف في سلوك جسم بمشاهدته من مختبرين يتحرك أحدهما "بالنسبة للآخر" بسرعة منتظمة وفي خط مستقيم. ولكن بمجرد حدوث تغير في سرعة المختبر المتحرك سواء في مقدار السرعة (التسريع والكبح) أو تغير في الاتجاه (في المنحنيات) يؤثر هذا التغير في سلوك الأجسام الموجودة فيه.

ضاع السكون إلى الأبد

توجد خاصية غريبة لحركة المختبر الذي يتحرك بسرعة منتظمة وفي خط مستقيم تلك هي أن حركته هذه لا تؤثر على سلوك الأجسام الموجودة فيه. الشيء الذي يضطرنا لمراجعة مفهوم السكون., 2 3

فقد يبين لنا أنه لا يوجد فرق بين حالة السكون. وأينما وجدنا مختبر يتحرك بانتظام وفي خط مستقيم "بالنسبة" لمختبر آخر ساكن أمكننا اعتبار ذلك المختبر أيضا مختبرا ساكنا. وهذا معناه أنه لا توجد حالة فريدة للسكون المطلق وإنما توجد أعداد لا حصر لها من "حالات السكون" المختلفة. وبالتالي لا يوجد مختبر واحد في حالة سكون، وإنما توجد عدد لا حصر له من المختبرات الساكنة، وهي تتحرك بالنسبة لبعضها البعض في خطوط مستقيمة وبسرعات منتظمة، ومنها السريع ومنها البطيء.

يتضح من ذلك أن السكون "نسبي" وليس مطلق. وأصبح لازماً علينا الإشارة دائما إلى المختبر الذي نجري منه المشاهدة والقياس عند دراستنا لعلم الحركة. كذلك يتبين أن محاولتنا قد باءت بالفشل حتى الآن لإعطاء مدلول الحركة صفة مطلقة. ولا يزال السؤال مطروحا:/ "إلى أي حالة من حالات "السكون" ننسب الحركة المشاهدة؟" بهذا نكون قد تعرضنا إلى أحد القوانين الطبيعية البالغة الأهمية والذي يسمى "بمبدأ نسبية الحركة".

هذ المبدأ يقول:/ تتبع حركة الأجسام نفس القوانين في جميع المختبرات التي تتحرك بالنسبة لبعضها البعض في مسارات مستقيمة وبسرعة منتظمة.

قانون القصور الذاتي

نستنتج من مبدأ نسبية الحركة أن جسما لا يقع تحت تأثير قوى خارجية إما أن يكون في حالة سكون أو يكون في حالة حركة منتظمة وفي خط مستقيم. ويعرف هذا الاستنتاج في علم الفيزياء بقانون القصور الذاتي.

يلعب هذا القانون دورا هاما في حياتنا اليومية، لا يتبادر للعين مباشرة. وطبقا لهذا القانون يظل جسم متحرك بانتظام وفي خط مستقيم على حركته هذه بلا حدود طالما لا تؤثر عليه قوى خارجية. ومع ذلك نشاهد في حياتنا اليومية أجساما تصل إلى الثبات كما لم تؤثر عليها قوى خارجية. وتفسير ذلك أن جميع الأجسام التي نشاهدها تقع تحت تأثير قوى خفية، تلك هي قوى الاحتكاك. وانعزال الجسم التام عن القوى الخارجية هو الشرط الذي يكتسب به قانون القصور الذاتي فاعليته. وهذا الشرط ليس متوفرا في حياتنا العادية. فإذا استطعنا تحسين إمكانيتنا التجريبية بعزل قوى الاحتكاك شيئا فشيئا أمكننا الاقتراب من تلك الظروف المثالية ولتمكنا من إثبات انطباق هذا القانون على حركة جميع الأجسام التي نشاهدها.

يعتبر اكتشاف مبدأ "نسبية الحركة" من أعظم الاكتشافات جميعا ولولاه لما تقدم علم الفيزياء. وقد قام العالم الكبير جاليليو جاليلي باكتشافه، وهو الذي هاجم تعاليم أرسطو القديمة بعزم، إذ كانت تعاليمه مسيطرة على العقول حتى العصور الوسطى وكانت الكنيسة الكاثوليكية معضدة لتعاليم أرسطو ورافضة لما أتى به جاليليو. وكان من رأي أرسطو أن الحركة المنتظمة ممكنة فقط تحت تأثير قوة وبدونها تتوقف الحركة. فأوضح جاليليو من خلال تجارب عديدة عكس ذلك، وبين أن قوة الاحتكاك هي التي تؤدي إلى توقف حركة الأجسام، وبزوال الاحتكاك تظل الأجسام على حركتها على الدوام.

السرعة نسبية أيضا

من نتائج مبدأ النسبية حقيقة أن الحديث عن حركة منتظمة وفي خط مستقيم ليس له معني طالما لم نشر إلى المختبر الساكن الذي نقيس منه السرعة، كما لا معنى لحديثنا عن مكان ما بتحديد خط الطول الجغرافي المار به دون ذكر دائرة العرض التي تتقاطع معه عنده.

نكتشف من ذلك أن السرعة مدلول "نسبي"، أي إذا قمنا بقياس سرعة جسم معين من عدة مختبرات ساكنة مختلفة حصلنا على نتائج مختلفة، في حين أن أي تغير في الحركة - كالتسريع أو الكبح أو تغيير اتجاه الحركة - يأخذ معنى مطلقا بصرف النظر عن المختبر الساكن الذي أجريت منه المشاهدة.

المراجع

    ١ موسوعات عربية مختلفة
   
X
Loading........